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Introduction

Suppose n independent samples have been collected,
for which we have an n-vector response Y, an nx q
matrix Z for q covariates, and an n x p matrix X for
variables of interest.

Assuming a generalized linear model:
E(Y[X,Z) = g (X8 + Za),

, Where p-vector 8 and g-vector « are unknown
parameters, and g is the canonical link function.

Null hypothesis:
Hy: 8 =750 versus Hi: B # Bo

p>>n.

Motivating examples: Polygenic test, Pathway based
analysis.
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e p < n: likelihood ratio test and the Wald test.

e The power tends to diminish quite rapidly as p
increases.

e Break down completely when p > n since usual
ordinary least squares estimator no longer exists.
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Existing e Goeman et al. (2011):
Methods

To _ (Y = o) TXXT(Y — fio)
(Y —ho)™D(Y — o)

where [ig: maximum likelihood estimate of g under the
null hypothesis; ID: diagonal of XXT.

e Guo and Chen (2016):
Tauo = N1 (Y — io)T(XXT = D)(Y — fig),

e n,p— 0o, Tgye CONverges to a normal distribution.
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Limitation of existing methods

A large proportion of small to moderate signals:
sum-of-squares of the score (existing tests) are more
powerful.

e Signals are strong but highly sparse: supremum of the
score (minimum p test) is more powerful.

e Signals are dense and in the same direction: Sum of
the score (Sum test) is more powerful.

¢ Intermediate situations: neither of type of the test is
powerful.

Goal

Develop an adaptive testing approach which would yield
high testing power under various high-dimensional
scenarios.
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e The score vector U:
1 n
aSPU U/:EZ(YI_/:\LOI))(I/ 1 </<p

Theory =1

e SPU tests: foray > 1

p n v
N 1 N
L(y, fio) =) <n > (Y- Mo:’)Xij> ;
j=1 i=1
n (A (Y= fo) Xi P
L(OO,/:ZO) — max (n ZI:‘]( i lu’OI) Ij) :
1<j<p Oji

T. = min P P
aSPU oL SPU(v,0)
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Theorem for SPU tests

Under Hy and some regularity conditions, we have
e Let I be a set of finite positive integers,

[{L(y. fio) — n(M)} /o er % N(O, R),
e Forany x € R,
Pr{L(co, o) — @ < x} — exp{—n""/2exp(—x/2)}

as n,p — oo, where a, = 2log p — log log p.

o [{L(y,f0) — w(v)}/o(V)]}er is asymptotically
independent with L(oo, fig).
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e Asymptotics:

Theory

po=1- ﬁ:(svzodd Jeryr N0 Fo)ds,

—T0<5,<To
pe=1~- %:(theven yeMT N(0, Ro)at,
—OOStrYSTE
Pmin = min{p07pEapOO}?
Paspu =1 — (1 = Prmin)°.
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Approximation for y(v)

Under the null hypothesis Hp,

() = L X of+olpn?), ity =2d,
o(pn=(@+1), if v = 2d +1,

where o = E[(S51)?], Sj = (Vi — 1oi) Xj-
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Under the null hypothesis Hp,
‘72(1) = %215"7/5[3 ojj + o(pn‘1) and for v > 2,

Theory

o Z{u” )¥? + o(pn ™)

R S T

CS|C1|02|201+02 ii
i#j 2c1+c3=y
20o+C3=y
c3>0

where ojj = E[S1,S1j]
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e For finite ~:
Theary o Weak dependence among X (a-mixing)

e p — oo, Lyapunov condition can be checked and central
limit theorem can be applied
e For ~ = oo: similar argument as Theorem 6 in Tony Cai
et al. (2014).
o With nuisance parameters: we prove ||uo — flo|| is
ignorable
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Simulation
Results

Simulation Settings

Simulation settings:

X: from multivariate normal distributions and
Xi ~ N(pui, T).
Z from standard normal distribution N(0, 1).

logit{P(¥; = 1)] = 1 + Za + X5,

Under null hypothesis, 8 = 0.

Under alternative, |ps| elements in g were set to be
non-zero, where s € [0, 1].
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Simulation Results

2000.

Table: Empirical type 1 errors and powers (%) of various tests for

normal samples with n = 200, p
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Figure: Power comparison for different methods.
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e Alzheimer’s disease (AD) is the most common form of
dementia.
e ADNI is a longitudinal multisite observational study of
Appication o healthy elders, mild cognitive impairment, and AD.
- ADNI has recruited more than 1,500 subjects.
o We retrieved a total of 214 human biological pathways
from the KEGG database (Only analyze the pathway
with 10 to 200 genes, #SNPs > 1000).
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Gre

Figure: Comparison between the asymptotic-based and the
parametric bootstrap-based p-values of SPU(~) and aSPU.
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Table: Results of the ADNI Data Application: KEGG Pathways
with p Values < 3 x 10~* by Any of aSPU, GT, and HDGLM
Theory p values
Pathway Name #G aSPU GT HDGLM
o Alzheimer’s disease 151 0.0E+00 3.8E-03 1.4E-03
A Amyotrophic lateral sclerosis 52 0.0E+00 2.3E-03  3.2E-04
Acute myeloid leukemia 55 0.0E+00 2.6E-03 7.6E-04
Adherens junction 72 9.0E-09 44E-01 4.7E-01
Fatty acid degradation 40 5.3E-08 1.6E-02 8.0E-03
Retinol metabolism 61 2.1E-07 4.1E-03 7.9E-04
Tyrosine metabolism 38 4.0E-07 7.7E-03 2.4E-03
Drug metabolism 70 2.2E-05 3.6E-02 2.6E-02
Heparin 26 6.4E-05 6.2E-04 1.1E-05

Metabolism of xenobiotics 68 1.6E-04 9.5E-02 9.1E-02
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Figure: Empirical powers of aSPU with different I set.
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