An Adaptive Association Test for Microbiome Data

Chong Wu¹, Jun Chen², Junghi¹ Kim and Wei Pan¹

¹ Division of Biostatistics, School of Public Health, University of Minnesota; ² Division of Biomedical Statistics and Informatics, Mayo Clinic

Aug. 4th, 2016

Table of Contents

Background

Microbiome Based Sum of Powered Score Tests

3 Numerical Examples

Simulation Results Application to a Gut Microbiome Data

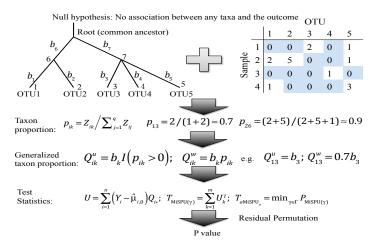
..

Human Microbiome Data

- Microbe: Tiny living organism, such as bacterium, fungus, or virus
- Microbiome: The genomes of human microbes; the way they interact with the human host
- Why human microbiome is important?
 - More than 10 times the number of microbes lives in the human body than cells.
 - Play an important part in our overall health.

Human microbiome association studies

- Seen as an "extended" human genome
- Detect an association of the human microbiome diversity with a phenotype of interest
- Improve our understanding of the non-genetic component of complex traits and diseases


Goal

Testing the association between the whole microbiome composition and the outcome of interest

The Feature of The Human Microbiome Data

- Operational taxonomic units (OTUs): surrogates for biological taxa
 - High dimensional: the number of OTUs are usually much larger than the sample size
 - Overdispersion: most OTUs are rare
- Phylogenetic Tree
 - A branching diagram or "tree" showing the inferred evolutionary relationships among various biological species

Background	MiSPU ●0000	Numerical Examples
Outline		
Outline a		

UNIVERSITY OF MINNESOTA

utine

Background	MiSPU ⊙●⊙⊙⊙	Numerical Examples
Outline		
MiSPU		

• Generalized taxon proportion *Q_{ik}*:

$$Q_{ik}^w = b_k p_{ki}; \quad Q_{ik}^u = b_k I(p_{ki})$$

- Raw weighted UniFrac distance is exactly the same as the L₁ distance of the Q^w_{ik}
- For a binary outcome, we use a logistic regression model:

$$\text{Logit}[Pr(Y_i = 1)] = \beta_0 + \beta' X_i + \sum_{k=1}^m Q_{ik} \varphi_k$$

*H*₀ : φ = (φ₁,...,φ_m)' = 0; that is, there is no association between any taxa and the outcome of interest

ical Examples

• Score:

$$U = \sum_{i=1}^{n} (Y_i - \hat{\mu}_{i,0}) Q_{i}.$$

MiSPU test statistic:

$$T_{\mathsf{MiSPU}(\gamma)} = w'U = \sum_{k=1}^m U_k^{\gamma}$$

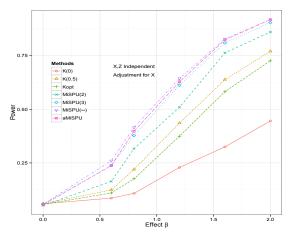
• Use permutation scheme (Pan et al., 2014) to calculate the p value

Background	MiSPU 000●0	Numerical Examples
Outline		
The choice of γ		

- As γ goes to infinity, we have

$$T_{\mathsf{MiSPU}(\infty)} \propto ||U||_{\infty} = \max_{k=1}^{m} |U_k|$$

- Intuition in the choice of γ :
 - the more sparse the signals, the larger γ
 - if (most) associations in one direction, the use an odd γ
- In practice, how to choose γ ?


- · Choose the one giving the most significant p value
- Use an adaptive test idea (Pan et al., 2014)
- aMiSPU test statistic:

$$T_{\mathsf{aMiSPU}} = \min_{\gamma \in \mathsf{\Gamma}} P_{\mathsf{MiSPU}(\gamma)}.$$

Use permutation or parametric bootstrap to estimate its p value

Background	MiSPU 00000	Numerical Examples
Simulation Results		

Simulation Results

Real Data: Gut Microbiome

- Diet strongly affects human health, partly by modulating gut microbiome composition
- In one cross-sectional study, 98 healthy volunteers were enrolled and habitual long-term diet information was collected using food frequency questionnaire
- Original study failed to detect the gender effect (p value 0.080)
- Increasing evidence suggests that there is sex difference in the human gut microbiome (Bolnick et al., 2014)
- Our new method can detect it (p value 0.0058)

MiSPU

Application to a Gut Microbiome Data

Real Data: Gut Microbiome

- A taxon in *Bacteroides* explains more than 90% relative contributions
- Top 4 taxa all come from the Bacteroides
- Gender status is likely associated with *Bacteroides*, but independent with other enterotypes