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Introduction aiSPU Discussion

Alzheimer’s disease

copyright @ Yaletown (2016)

� AD is an irreversible, progressive brain

disease

� Affect 40 million people worldwide

� In 2017, the direct cost to American

society is about $259 billion

(Alzheimer’s Association, 2017)

� Highly heritable (Gatz et al. 2006)
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Genome-wide association study (GWAS)

copyright @ John Fouts (2016)

� Genome: the set of genetic

information encoded in 23

chromosome pairs

� SNP: Variation in a single base pair

� Genetic score (additive) for each SNP

and a person:

AA = 0, AB = 1, BB = 2
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Scan by individual SNPs

Regress outcome (e.g., disease status) on each SNP
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Figure: Manhattan plot of the University of Pittsburgh sample for

genome-wide association with Alzheimer’s (1,291 cases and 938

controls; Kamboh et al. 2012)
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Ways to improve statistical power

� Increase the sample size (meta-analysis):

Figure: Manhattan plot of IGAP meta-analysis of Alzheimer’s

(17,008 cases and 37,154 controls; Lambert et al. 2013)
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Ways to improve statistical power

� Increase the sample size (meta-analysis):

Figure: Manhattan plot of a 2019 meta-analysis of Alzheimer’s (N

= 455,258 ; Jansen et al. 2019)
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Ways to improve statistical power

Testing a group of SNPs jointly to both gain statistical power

and enhance biological interpretation

� Gene-level analysis (the number of nuisance parameter is low);

many methods have been developed

� Gene-environment interaction analysis; our focus today!
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Motivations

Practical motivation: testing gene-environment interactions

� Complex diseases are often caused by the interplay of genes

and the environment

Theoretical motivations:

� Testing high-dim groups of parameters with high-dim nuisance

parameters is largely untouched

� Existing methods hard to control Type I error rates and

maintain high power
7
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Problem formulation

� Yi is the phenotype (outcome) (i = 1, . . . , n)

� Z1, . . . ,Zq are the q covariates (age, gender, environmental

effect, genetic effect, etc.) (high-dimensional)

� X1,X2, . . . ,Xp are the p gene-environment interactions

(high-dimensional)

� µi = E (Yi |Z1, . . . ,Zq,X1, . . . ,Xp)

Model

µi = g−1(α0 + α1Zi1 + · · ·+ αqZiq + β1Xi1 + · · ·+ βpXip)

� Hypothesis of no gene-environment interaction effect

H0 : β1 = · · · = βp = 0 v.s. H1 : At least one βj 6= 0
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Statistical challenges

� Some SNPs are in linkage disequilibrium

� Number of SNPs (p) in a gene/pathway might be large

� Alternative hypothesis: dense or sparse?

• Are many or only a very few βj 6= 0?
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“Dense”/“sparse” alternative

� Unknown truth: size of P0 = {j : βj 6= 0} is k = p1−η

� “Dense” alternative (e.g. η < 1/2):

Ex: p = 1000, η = 0.3⇒ k = 125

� “Sparse” alternative (η ≥ 1/2):

Ex: p = 1000, η = 0.9⇒ k = 2
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Statistical challenge

� Estimating α under the H0 is difficult

� Use a penalized regression framework:

min−L(α) + λP(α)

� Ridge: P(α) =
∑q

j=1 α
2
j ; Lasso: P(α) =

∑q
j=1 |αj |

� Lasso yields sparse but biased estimation
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Existing methods

Method GESAT (Lin et al., Bio-

statistics, 2013)

Three step procedure

(Zhang and Cheng,

JASA, 2017)

Test statistic SSU + Ridge penalty Tst = maxj
√
n|β̂DL|

sd(β̂DL)

Pros Fast; easy to use Powerful under sparse

alternative

Cons Fail to control Type I er-

ror rates when q is large

Only for linear mod-

els; Lose power under

“dense” alternatives

Note: β̂DL is the de-sparsified (or de-biased) Lasso: Lasso plus a

one step bias correction
12
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Review: low-dimensional situation

� The score statistic for the jth SNP (ignore some constant) is:

Uj =
1

n

n∑
i=1

(Yi − µ̂0i )Xij ,

where µ̂0i is the MLE of E (Yi |H0)

Question

How to aggregate the score of SNPs optimally to test the effect

of a gene/pathway/region?
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Adaptive sum-of-powered score (aSPU) test

� Idea: construct a class of tests such that each of them will be

powerful under different situations; take the minimum to

maintain high power

� SPU(γ) =
∑p

j=1 U
γ
j ;

SPU(2) = SSU test

� SPU(∞) = max1≤j≤p nU
2
j /σjj

� aSPU (Pan et al. 2014): TaSPU = minγ∈Γ PSPU(γ)

• PSPU(γ) is the p-value of SPU(γ)

• Γ = {1, 2, . . . , 6,∞}
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Oracle estimator

� Oracle estimator: MLE if we know which αj = 0

� If we know the oracle estimator, it will reduce to the

low-dimensional nuisance parameter situations

Question

How to get the oracle estimator?
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Our idea: using TLP to estimate nuisance parameter
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J(αj) with τ = 1

� Truncated Lasso penalty (TLP):

J(αj) = min(|αj |, τ)

(Shen et al. JASA, 2012)

� TLP consistently reconstructs the

oracle estimator under some mild

conditions

� TLP is a non-convex penalty. I

develop an R package “glmtlp”

Online manual:

wuchong.org/glmtlp.html
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Difference of convex (DC) algorithm

� Estimate α by minimizing minS(α) = −L(α) + λP(α)

� DC decomposition of S(α):

S(α) = S1(α)− S2(α)

S1(α) = −L(α) + λ

q∑
j=1

|αj |

S2(α) = λ

q∑
j=1

max(|αj | − τ, 0)

� Approximate the S2(α), then we have

S (m)(α) = −L(α) + λ

q∑
j=1

|αj |I (|α̂
(m−1)
j | ≤ τ)

17



Introduction aiSPU Discussion

New test: iSPU and aiSPU

� Apply the adaptive testing idea to maintain high power across

different cases

� Score Uj = 1
n

∑n
i=1(Yi − µ̂0i )Xij , 1 ≤ j ≤ p

µ̂0i = g−1(α̂TLP
0 + Z1i α̂

TLP
1 + · · ·+ Z1qα̂

TLP
q )

� iSPU(γ): iSPU(γ) =
∑p

j=1 U
γ
j

� iSPU(∞): iSPU(∞) = max1≤j≤p nU
2
j /σjj

� aiSPU: TaiSPU = minγ∈Γ PiSPU(γ)

• Γ = {1, 2, . . . , 6,∞}
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Asymptotic distribution under the null

Theorem

Under some mild assumptions and the null hypothesis H0:

� Let Γ be a set of finite positive integers,

[{iSPU(γ)− µ(γ)}/σ(γ)]
′
γ∈Γ converges weakly to a normal

distribution N(0,R) as n, p →∞

� When γ =∞, let ap = 2 log p − log log p, for any x ∈ R,

Pr{iSPU(∞)− ap ≤ x} → exp{−π−1/2 exp(−x/2)} as

n, p →∞

� [{iSPU(γ)− µ(γ)}/σ(γ)]
′
γ∈Γ is asymptotically independent

with iSPU(∞)
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Asymptotics-based method

pO = 1−
∫
s=(sγ :odd γ∈Γ)

′

−TO≤sγ≤TO

N(0,RO)ds

pE = 1−
∫
t=(tγ :even γ∈Γ)

′

−∞≤tγ≤TE

N(0,RE )dt

pmin : = min{pO , pE , p∞}

paSPU = 1− (1− pmin)3
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Asymptotic power analysis

Pr(TaiSPU = minγ∈Γ PiSPU(γ) < p∗α) ≥ Pr(PiSPU(γ) < p∗α)

� p∗α: critical threshold under H0 with significance level α

� The asymptotic power of aiSPU is 1 if there exists γ ∈ Γ such

that Pr(PiSPU(γ) < p∗α)→ 1
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Asymptotic power analysis

� Unknown truth: size of P0 = {j : βj 6= 0} is k = p1−η

� “Dense” alternatives (η < 1/2)

• All variables are associated and with the same effect size:

iSPU(1) is asymptotically most powerful among iSPU(γ)’s

• Half variables are positively associated; the other half are

negatively associated: iSPU(2) is asymptotically most powerful

� “Sparse” alternatives (η > 1/2):

• The asymptotic power of iSPU with finite γ is strictly less than

1

• iSPU(∞) is more powerful
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Simulation results: validation of theorem

Empirical Type I errors and powers (%) for a linear model with

n = 200, p = 1000, q = 1000, and η = 0.99

Asymptotics (parametric bootstrap)

c 0 0.3 0.5 0.7

iSPU(1) 5.6 (5.4) 6.7 (6.1) 6.6 (6.3) 7.5 (7.2)

iSPU(2) 3.6 (3.3) 4.2 (5.7) 6.6 (8.2) 15.3 (18.9)

iSPU(3) 5.0 (4.8) 6.4 (5.6) 14.6 (13.5) 41.7 (40.1)

iSPU(4) 3.8 (1.8) 9.1 (7.5) 29.5 (26.4) 54.6 (52.1)

iSPU(6) 4.9 (2.2) 18.2 (13.3) 38.8 (33.8) 61.9 (58.2)

iSPU(∞) 3.5 (4.6) 16.1 (18.3) 36.5 (38.7) 61.4 (61.9)

aiSPU 5.3 (4.1) 16.6 (16.5) 38.5 (38.3) 61.4 (60.1)
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Power comparison under a linear model

Sparse alternative (η = 0.99)
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Power comparison under a linear model

Dense alternative (η = 0.23)
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Type I error rates under a logistic model

Empirical Type I error rates of various tests under G × E

interaction simulations with n = 2000 and various q

* Inflated Type I error rates

q 25 50 100 300 500

GESAT 0.061 0.055 0.103* 0.636* 1.000*

aiSPU(Oracle) 0.067 0.049 0.052 0.057 0.047

aiSPU(TLP) 0.061 0.054 0.053 0.042 0.047
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ADNI data analysis: pathway-gender interactions

� Brain development and adult brain structure differ by gender

(Cosgrove et al. 2007)

� 214 healthy controls (Y = 1); 364 MCI subjects (Y = 0)

� Main effects: years of education, age, intracranial volume

measured at baseline, gender, and genetic variants

� Bonferroni correction; 96 KEGG pathways

(0.05/100 = 5× 10−4)

� aiSPU identified one significant pathway Fructose and

mannose metabolism (hsa00051, p-value = 3× 10−4);

GESAT failed to do so (p-value = 0.016)
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ADNI data analysis: gene-gender interactions

� Candidate gene study (Gene APOE )

� aiSPU identified APOE and gender interaction effects (p-value

= 0.039)

GESAT failed to identify (p-value = 0.56)

� Women who are positive for the APOE ε4 are at greater risk

of developing AD than men with this allele (Altmann et al.

2014)
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Discussion

� Statistical inference for high-dimensional data is challenging

� Adaptive testing idea generally maintains high power across a

wide range of alternatives

� Develop new testing methods and theory for testing

high-dimensional groups of variables with high-dimensional

nuisance parameters

� Wu, C., Xu, G., Shen, X., & Pan, W. (2020). A

Regularization-Based Adaptive Test for High-Dimensional

Generalized Linear Models. Journal of machine learning

research, 21, 1-67.

� http://wuchong.org/software.html
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Remarks on Truncated Lasso penalty (TLP)

� Truncated Lasso penalty (TLP) is a good approximate to L0

penalty

� Like debiased Lasso, TLP can be used for hypothesis testing
for a single or a set of variables

• Zhu, Yunzhang, Xiaotong Shen, and Wei Pan. “On

high-dimensional constrained maximum likelihood inference.”

Journal of American Statistical Association 115.529 (2020):

217–230.

� TLP can also be applied to Large Causal Network

• Li, C., Shen, X., Pan, W. (2020). “Likelihood ratio tests for a

large causal network.” Journal of American Statistical

Association. 113, 1–16
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Remarks on adaptive test

Adaptive testing ideas have been applied to many areas

� Theorectical work:

• Y He, G Xu, C Wu, and W Pan. “Asymptotically independent

U-statistics in high-dimensional testing.” Annals of Statistics,

accepted.

• C Wu, G Xu and W Pan (2019) ”An adaptive test on

high-dimensional parameters in generalized linear models.”

Statistica Sinica, (29), 2163-2186.
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Remarks on adaptive test

In Applications:

� In rare variant analysis: Pan, W. et al.. (2014). A powerful

and adaptive association test for rare variants. Genetics,

197(4), 1081–1095.

� In human microbiome analysis: Wu, C. et al. (2016). An

adaptive association test for microbiome data. Genome

Medicine, 8(1), 56.

� In pathway analysis: Pan, W. et al. (2015). A powerful

pathway-based adaptive test for genetic association with

common or rare variants. AJHG, 97(1), 86–98.

� In TWAS analysis: Xu, Z. et al. (2017). A powerful

framework for integrating eQTL and GWAS summary data.

Genetics, 207(3), 893–902. 32
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Robustness of choice of Γ

Sparse alternative: 2 “causal”
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Empirical powers of aSPU with different Γ set. Γ set aSPU 1,

aSPU 2, aSPU 3, aSPU 4 represent aSPU with

Γ1 = {1, 2, . . . , 4,∞}, Γ2 = {1, 2, . . . , 6,∞},
Γ3 = {1, 2, . . . , 8,∞}, and Γ4 = {1, 2, . . . , 10,∞}, respectively.

We set n = 200 and p = 2000.



Application to ADNI data: validation of theorem
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More details on proof outline

� For finite γ: if all SNPs are independent, we can apply CLT

directly; use Bernstein’s block to make the leading term

almost independent

� For asymptotically independent: the distribution of SPU(γ)

conditional on SPU(∞) is the same as the unconditional

version



Details on GESAT

� Q = (Y − µ(α̂R))′XX ′(Y − µ(α̂R))

� Follow a mixture of χ2 distribution under the null

�
√
n-consistent (Knight and Fu 2000):

√
n(α̂R − α) = Op(1)

Only valid when the cov(Z ) is non-negative (small q)

� Cannot control Type I error rate when q is large



Details on three-step procedure

� Desparsifying the Lasso: Lasso plus a one step bias correction

� Three-step procedure (Zhang and Cheng, 2017)

• Random sampling splitting: D1 & D2

• Marginal screening based on D1

• Testing after screening based on D2:

Tnst = maxj
√
n|β̂DL|; Tst = maxj

√
n|β̂DL|/sd(β̂DL)

• Error term will be out of control for other type statistics

(Sum, SSU)

• Only apply to a linear model
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