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Background Methods Results Discussion

Genome-wide association study (GWAS)

copyright @ John Fouts (2016)

■ Genome: the set of genetic
information encoded in 23
chromosome pairs

■ SNP: Variation in a single base pair

■ Genetic score (additive) for each
SNP and a person:
AA = 0, AB = 1, BB = 2
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GWAS

copyright @ GWAS Catalog

Question
How do we understand GWAS associations?
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Transcriptome-Wide Association Study (TWAS)

Goal:
Estimate the association between gene expression and disease

■ SNP → Gene expression → disease
■ The sample size of gene expression data is usually small
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Transcriptome-Wide Association Study (TWAS)

■ We have two separate datasets: 1) transcriptome data
(with SNP and gene expression); 2) GWAS data (with SNP
and disease status)

■ TWAS idea:
• predict/impute gene-expression with SNPs as predictors;
• test association b/w a trait and imputed gene-expression;
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TWAS/PrediXcan idea cont.

■ Build a prediction model for genetically regulated
expression (GRex): Y∗ =

∑p
j=1 wjX∗j + ϵ, where Y∗ is

gene-expression.
■ for a given gene for subject i, predict the GReX of the gene

using the SNPs around that gene: ĜReXi =
∑p

j=1 ŵjXi,j;
■ test association between a trait and predicted

gene-expression:
g(E(Yi)) = β0 + ĜReXiβc = β0 +

∑p
j=1 ŵjXi,jβc with null

hypothesis H0: βc = 0.
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More details

■ Consider a GLM: g(E(Yi)) = β0 + β′Xi = β0 +
∑p

j=1 Xi,jβj with
H0 : β = (β1, ..., βp)′ = 0;

■ replace Xi,j by the weighted genotype scores ŵjXi,j;
■ PrediXcan = TWAS = Sum test (Pan 2009).
■ U∗ = (U∗

1 , ...,U∗
p)

′ =
∑n

i=1 X′i(Yi − µ̂0i );
U = (U1, ...,Up)

′ = WU∗ =
∑n

i=1WX′i(Yi − µ̂0i ),
where W = Diag(ŵ1, ..., ŵp)
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Challenges and opportunities in TWAS
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Challenges and opportunities in TWAS

Goal:
Distinguishing co-regulated genes through fine-mapping

■ Fine-mapping multiple associated TWAS models at a locus;
■ Fine-mapping is a method that prioritizes the most likely

causal SNP/gene at a locus
■ Fine-mapping is conditional analysis; Not a causal

inference method
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Overview of Methods
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Fine-mapping Of Gene Sets (FOGS)

y = Vα+ Xβ + ϵ

■ y = {yi} is a centered n× 1 vector of phenotypes
■ X = {xij} is a centered (with mean 0) n× p genotype

matrix at p SNPs with non-zero eQTL-derived weights for
gene A (of interest)

■ V = {vij} is a centered n× q genotype matrix at q SNPs
with non-zero eQTL weights for any of other genes in the
same locus

■ β and α are the joint effects for gene A (of interest) and
other genes
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Step 1: Estimating the conditional Z score via ridge regression

■ Q: SNPs are highly correlated; Solution: using ridge
regression

■ Under H0 : β = 0, the effect of SNPs in gene A is zero; no
need to adjust for them while estimating the conditional
score Zj for SNP j

■ Q: only GWAS summary data are available; Solution: using
reference data to estimate the covariance matrix

β̂ = (X̃′X̃+ λIp∗)−1X̃y
var(β̂) = σ2

J (X̃′X̃+ λIp∗)−1X̃′X̃(X̃′X̃+ λIp∗)−1
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Step 2: Aggregating conditional Z scores to prioritize causal gene

U = (U1, . . . ,Up)
′ = WZ,

where W = Diag(ŵ1, . . . , ŵp) are the eQTL-derived weights and
Z is the conditional Z score estimated from the previous
subsection.

Challenge:
Different tests will be powerful under different alternatives.
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Step 2: Aggregating conditional Z scores to prioritize causal gene

■ Sum test: TSum =
∑p

j=1 Uj
SSU test: TSSU = UTU =

∑p
j=1 U

2
j

■ More generally, for an integer γ ≥ 1, an SPU(γ) test is
defined as: TSPU(γ) =

∑p
j=1 U

γ
j

■ for an even integer γ → ∞,
TSPU(γ) ∝

(∑p
j=1 |Uj|γ

)1/γ
→ maxj |Uj| = TSPU(∞)

■ TaSPU = min
γ∈Γ

PSPU(γ), where PSPU(γ) is the p-value of the
SPU(γ) test
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Background Methods Results Discussion

Simulation: FOGS prioritizes and improves resolution for fine-
mapping causal genes
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■ Use chromosome 22 for all simulations; use lung health
study for genotype

■ We randomly selected two SNPs in one gene to be causal,
and the effect size was c = 0.1. The estimated hertibability
was about 2.5%.

14



Background Methods Results Discussion

Simulation: FOGS prioritizes and improves resolution for fine-
mapping causal genes
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Simulation: FOGS is robust to the choice of penalty parameter
λ
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Simulation: Robustness analysis of FOGS

No SNP-trait association for all SNPs in the locus (under the
null):
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Simulation: Robustness analysis of FOGS

The two causal SNPs were missing:
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Simulation: Robustness analysis of FOGS

The causal gene (with all its SNPs) was missing:
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Application to a schizophrenia GWAS summary dataset
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Figure 1: Diagram of the putative causal genes prioritized by different
methods for the risk regions that contained at least two genes

20



Background Methods Results Discussion

Application to a schizophrenia GWAS summary dataset

■ Both FOGS and FOCUS identified positive control: C4A
■ FOGS identified some putatitve causal genes (such as

RGS6 and B3GAT1) that have some biological support but
ignored by FOCUS.
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Discussion

■ We introduce FOGS, a new method to prioritize putative
causal genes for TWAS

■ FOGS adequately controls Type I error rates and achieves
high power under various alternatives

■ Software:
https://github.com/ChongWu-Biostat/FOGS

■ Manuscript: Wu, C, Pan, W. (2020) A powerful fine-mapping
method for transcriptome-wide association studies.
Human Genetics, 139(2), 199–213.
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