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Genome-wide association study (GWAS)

B Genome: the set of genetic
information encoded in 23
chromosome pairs

B SNP: Variation in a single base pair

B Genetic score (additive) for each
copyright @ John Fouts (2016) SNP and a person:
AA=0,AB=1BB=2
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GWAS
GWAS Catalog
As of May 2019

3,989 publications
+ 138,312 variant-trait
associations
*+ >6,000 full summary
* | statistics files
v i

copyright @ GWAS Catalog

Question
How do we understand GWAS associations?
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Transcriptome-Wide Association Study (TWAS)

Goal:
Estimate the association between gene expression and disease

B SNP — Gene expression — disease

B The sample size of gene expression data is usually small
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Transcriptome-Wide Association Study (TWAS)

B We have two separate datasets: 1) transcriptome data
(with SNP and gene expression); 2) GWAS data (with SNP
and disease status)

B TWAS idea:

- predict/impute gene-expression with SNPs as predictors;
- test association b/w a trait and imputed gene-expression;
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TWAS/PrediXcan idea cont.

B Build a prediction model for genetically regulated
expression (GRex): Y* = 3°0 , wiX* + ¢, where Y* is
gene-expression.

W for a given gene for subject i, predict the GReX of the gene
using the SNPs around that gene: G/R&, = Z}; WiXi j;

B test association between a trait and predicted
gene-expression:

g(E(Y;)) = Bo + GReXifc = fo + S0, WiX; ;8 with null
hypothesis Ho: . = 0.
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More details

W Consider a GLM: g(E(Y))) = Bo + 8'Xi = fo + 2, Xi, 6 with
HO : /8 - (/817 "'7/8[3)/ - O:
B replace X;; by the weighted genotype scores WX j;
PrediXcan = TWAS = Sum test (Pan 2009).
B U = (U],...,.Up) = S Xi(Yi — a9);
U= (Ur,..., Up) = WU* = 31, WXI(Y; — 4f),
where W = Diag(W, ..., Wp)



Background Methods Results Discussion
000000080 000000 000000000 000

Challenges and opportunities in TWAS

nature
https://doi.org/10.1038/541588-019-0385-z genetlcs

PERSPECTIVE

Opportunities and challenges for transcriptome-
wide association studies

Michael Wainberg', Nasa Sinnott-Armstrong ©?, Nicholas Mancuso @3, AlvaroN.Barbeira®?,
David A. Knowles ©5¢, David Golan?, Raili Ermel’, Arno Ruusalepp’?, Thomas Quertermous ©°,
KeHao ©, Johan L. M. Bjérkegren ®810112* Hae Kyung Im ©4*, Bogdan Pasaniuc (31314*,
Manuel A.Rivas ©* and Anshul Kundaje ®'2*

i id iati studles (TWAS) i id iation studies (GWAS) and gene expression
d to identify g trait In this Perspective, we explore properties of TWAS as a potential approach to
mze causal genes at GWAS Iocu, hy usmg simulations and case studies of literature-curated candidate causal genes for
| and Crohn's disease. We explore risk loci where TWAS accurately prioritizes
the likely causal gene as well as loci where TWAS pnormzes multiple genes, some Ilkely to be non-causal, owing to sharing

of expression quantitative trait loci (eQTL) TWAS is ially prone to .-..u- i with expi ion data from
non-trait-related tissues or cell types, owing to sub ial 1l-ty iation in exp ion levels and eQTL strengths.
Nonetheless, TWAS prioritizes candidate causal genes more than simple baselii We suggest best practices for

causal-gene prioritization with TWAS and discuss future opportunities for improvement. Our results showcase the strengths
and limitations of using eQTL datasets to determine causal genes at GWAS loci.
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Challenges and opportunities in TWAS

Goal:
Distinguishing co-regulated genes through fine-mapping

B Fine-mapping multiple associated TWAS models at a locus;
B Fine-mapping is @ method that prioritizes the most likely
causal SNP/gene at a locus

B Fine-mapping is conditional analysis; Not a causal
inference method
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Overview of Methods

(a) (b) TWAS results
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Fine-mapping Of Gene Sets (FOGS)

y=Va+XB+e€

B y = {y;} is a centered n x 1 vector of phenotypes

B X = {X;} is a centered (with mean 0) n x p genotype
matrix at p SNPs with non-zero eQTL-derived weights for
gene A (of interest)

B V= {v;}isacentered n x g genotype matrix at g SNPs
with non-zero eQTL weights for any of other genes in the
same locus

B 3 and « are the joint effects for gene A (of interest) and

other genes
10
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Step 1: Estimating the conditional Z score via ridge regression

B Q: SNPs are highly correlated; Solution: using ridge
regression

B Under Hg : 3 = 0, the effect of SNPs in gene A is zero; no
need to adjust for them while estimating the conditional
score Zj for SNP j

B Q: only GWAS summary data are available; Solution: using
reference data to estimate the covariance matrix

B = XX+ Mp.) 'Ky
var(B8) = o (XX + Mp.) X XXX + Mp.) ™

n
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Step 2: Aggregating conditional Zscores to prioritize causal gene

U=(Ur,...,Up) =Wz

where W = Diag(Ws, ..., W,) are the eQTL-derived weights and
Z is the conditional Z score estimated from the previous
subsection.

Challenge:
Different tests will be powerful under different alternatives.

12
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Step 2: Aggregating conditional Zscores to prioritize causal gene

W Sum test: Tsum = 37, Uj
SSU test: Tssy = UTU = 327, U7
B More generally, for an integer v > 1, an SPU(y) test is
. _ NP
defined as: Tspy(y) = 201, U}7
W for an even integer v — oo,
P 1/
Tspu(y) (Zj;] \Um) — max; |Uj| = Tspy(oo)
W Ty = mirr1 Pspu(y), Where Pspy,y is the p-value of the
~E

SPU(7) test

)
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Simulation: FOGS prioritizes and improves resolution for fine-
mapping causal genes

Sensiiy (%)
)

B Use chromosome 22 for all simulations; use lung health

study for genotype
B We randomly selected two SNPs in one gene to be causal,
and the effect size was ¢ = 0.1. The estimated hertibability

was about 2.5%. ”



Background Methods Results Discussion
000000000 000000 008000000 000

Simulation: FOGS prioritizes and improves resolution for fine-
mapping causal genes
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Simulation: FOGS is robust to the choice of penalty parameter
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Simulation: Robustness analysis of FOGS

No SNP-trait association for all SNPs in the locus (under the

null):
ﬁ H

0.0
Nominal « level

Method

- Foas

Type 1 error rate
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Simulation: Robustness analysis of FOGS

The two causal SNPs were missing:

# false positives # true positives
0.75-
4
2 050~ type
S ES3 Complete data
5 E3 Masked causal SNPs
*
0.25-
0.00-

Complete data Masked causal SNPs ~ Complete data Masked causal SNPs
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Simulation: Robustness analysis of FOGS

The causal gene (with all its SNPs) was missing:

# of false positive genes

0.6

0.4

02

Complete data

Masked causal Genes

Complete data

type
B3 Complete data
B3 Masked causal Genes

Masked causal Genes
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Application to a schizophrenia GWAS summary dataset

FOCUS

Figure 1: Diagram of the putative causal genes prioritized by different
methods for the risk regions that contained at least two genes

20
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Application to a schizophrenia GWAS summary dataset

B Both FOGS and FOCUS identified positive control: C4A

B FOGS identified some putatitve causal genes (such as
RGS6 and B3GATT) that have some biological support but
ignored by FOCUS.

21
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Discussion

B We introduce FOGS, a new method to prioritize putative
causal genes for TWAS

B FOGS adequately controls Type | error rates and achieves
high power under various alternatives

B Software:
https://github.com/ChongWu-Biostat/FOGS

B Manuscript: Wu, C, Pan, W. (2020) A powerful fine-mapping
method for transcriptome-wide association studies.
Human Genetics, 139(2), 199-213.
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