

A powerful fine-mapping method for transcriptome-wide association studies

Chong Wu Department of Statistics Florida State University

> Chong Wu & Wei Pan JSM 2020 Aug. 5, 2020

Outline

Background

Methods

Discussion

Methods 000000 Results 000000000 Discussion 000

Genome-wide association study (GWAS)

copyright @ John Fouts (2016)

- Genome: the set of genetic information encoded in 23 chromosome pairs
- SNP: Variation in a single base pair
 - Genetic score (additive) for eachSNP and a person:AA = 0, AB = 1, BB = 2

GWAS

Methods 000000 Results 000000000 Discussion 000

GWAS Catalog As of May 2019 3,989 publications ٠ 138,312 variant-trait ٠ associations >6,000 full summary E Sec. 2 statistics files -Binness and La Canal da Stell 1 1 TALAN Ľ Condition in the THE REAL PROPERTY. V.

copyright @ GWAS Catalog

Question

How do we understand GWAS associations?

Background	Methods	Results	Discussion
00000000	000000	00000000	000

Transcriptome-Wide Association Study (TWAS)

Goal:

Estimate the association between gene expression and disease

 $\blacksquare SNP \rightarrow Gene expression \rightarrow disease$

■ The sample size of gene expression data is usually small

Background	Methods	Results	Discussio
00000000	000000	00000000	000

Transcriptome-Wide Association Study (TWAS)

- We have two separate datasets: 1) transcriptome data (with SNP and gene expression); 2) GWAS data (with SNP and disease status)
- TWAS idea:
 - predict/impute gene-expression with SNPs as predictors;
 - test association b/w a trait and imputed gene-expression;

Background	Methods	Results	Discussion
00000000	000000	00000000	000

TWAS/PrediXcan idea cont.

- Build a prediction model for genetically regulated expression (GRex): $Y^* = \sum_{j=1}^p w_j X_j^* + \epsilon$, where Y^* is gene-expression.
- for a given gene for subject *i*, predict the GReX of the gene using the SNPs around that gene: $\widehat{\text{GReX}}_i = \sum_{i=1}^p \hat{w}_i X_{i,j}$;
- test association between a trait and predicted gene-expression: $g(E(Y_i)) = \beta_0 + \widehat{GReX_i}\beta_c = \beta_0 + \sum_{j=1}^p \widehat{w}_j X_{i,j}\beta_c$ with null hypothesis H_0 : $\beta_c = 0$.

Background	Methods	Results	Discussion
000000●00	000000	00000000	000
More details			

- Consider a GLM: $g(E(Y_i)) = \beta_0 + \beta' X_i = \beta_0 + \sum_{j=1}^p X_{i,j} \beta_j$ with $H_0: \beta = (\beta_1, ..., \beta_p)' = 0;$
- replace $X_{i,j}$ by the weighted genotype scores $\hat{w}_i X_{i,j}$;
- PrediXcan = TWAS = Sum test (Pan 2009).

$$U^* = (U_1^*, ..., U_p^*)' = \sum_{i=1}^n X_i'(Y_i - \hat{\mu}_i^0);$$

$$U = (U_1, ..., U_p)' = WU^* = \sum_{i=1}^n WX_i'(Y_i - \hat{\mu}_i^0),$$

where $W = \text{Diag}(\hat{w}_1, ..., \hat{w}_p)$

Methods 000000 Results 000000000 Discussion 000

Challenges and opportunities in TWAS

PERSPECTIVE https://doi.org/10.1038/s41588-019-0385-z genetics

Opportunities and challenges for transcriptomewide <u>association</u> studies

Michael Wainberg¹, Nasa Sinnott-Armstrong⁹², Nicholas Mancuso⁹³, Alvaro N. Barbeira⁹⁴, David A. Knowles^{5,6}, David Golan², Raili Ermel⁷, Arno Ruusalepp⁷⁸, Thomas Quertermous⁹⁹, Ke Hao¹⁰, Johan L. M. Björkegren^{9,8,0,11,12*}, Hae Kyung Im^{94*}, Bogdan Pasaniuc^{9,3,13,14*}, Manuel A. Rivas^{9,15*} and Anshul Kundaje^{9,12*}

Transcriptome-wide association studies (TWAS) integrate genome-wide association studies (GWAS) and gene expression datasets to identify gene-trait associations. In this Perspective, we explore properties of TWAS as a potential approach to prioritize causal genes at GWAS loci, by using simulations and case studies of literature-curated candidate causal genes for schizophrenia, low-density-lipoprotein cholesterol and Crohn's disease. We explore risk loci where TWAS accurately prioritizes the likely causal gene as well as loci where TWAS prioritizes multiple genes, some likely to be <u>non-causal</u>, owing to <u>sharing</u> of <u>expression quantitative trait loci (eQTL)</u>. TWAS is especially prone to spurious prioritization with expression data from non-trait-related tissues or cell types, owing to substantial cross-cell-type variation in expression levels and eQTL strengths. Nonetheless, TWAS prioritizes candidate causal genes more accurately than simple baselines. We suggest best practices for causal-gene prioritization with TWAS and discuss future opportunities for improvement. Our results showcase the strengths and limitations of using eQTL datasets to determine causal genes at GWAS loci.

Background	Methods	Results	Discussi
00000000	000000	00000000	000

Challenges and opportunities in TWAS

Goal:

Distinguishing co-regulated genes through fine-mapping

- Fine-mapping multiple associated TWAS models at a locus;
- Fine-mapping is a method that prioritizes the most likely causal SNP/gene at a locus
- Fine-mapping is conditional analysis; Not a causal inference method

Outline

Methods

Discussion

Background	Methods	Results	Discussion
00000000	00000	00000000	000

Overview of Methods

9

Background	Methods	Results	Discussion
00000000	00000	00000000	000

Fine-mapping Of Gene Sets (FOGS)

$$y = V\alpha + X\beta + \epsilon$$

- **y** = { y_i } is a centered $n \times 1$ vector of phenotypes
- X = {x_{ij}} is a centered (with mean 0) n × p genotype matrix at p SNPs with non-zero eQTL-derived weights for gene A (of interest)
- V = {v_{ij}} is a centered n × q genotype matrix at q SNPs with non-zero eQTL weights for any of other genes in the same locus
- β and α are the joint effects for gene A (of interest) and other genes

Background	Methods	Results	Discussion
00000000	000000	00000000	000

Step 1: Estimating the conditional Z score via ridge regression

- Q: SNPs are highly correlated; Solution: using ridge regression
- Under H₀ : β = 0, the effect of SNPs in gene A is zero; no need to adjust for them while estimating the conditional score Z_j for SNP j
- Q: only GWAS summary data are available; Solution: using reference data to estimate the covariance matrix

$$\hat{\boldsymbol{\beta}} = (\tilde{\boldsymbol{X}}'\tilde{\boldsymbol{X}} + \lambda \boldsymbol{I}_{p*})^{-1}\tilde{\boldsymbol{X}}\boldsymbol{y}$$
$$\operatorname{var}(\hat{\boldsymbol{\beta}}) = \sigma_J^2 (\tilde{\boldsymbol{X}}'\tilde{\boldsymbol{X}} + \lambda \boldsymbol{I}_{p*})^{-1}\tilde{\boldsymbol{X}}'\tilde{\boldsymbol{X}} (\tilde{\boldsymbol{X}}'\tilde{\boldsymbol{X}} + \lambda \boldsymbol{I}_{p*})^{-1}$$

Background Methods	Results	Discussion
0000000 000000	00000000	000

Step 2: Aggregating conditional Z scores to prioritize causal gene

$$\boldsymbol{U}=(U_1,\ldots,U_p)'=\boldsymbol{W}\boldsymbol{Z},$$

where $W = \text{Diag}(\hat{w}_1, \dots, \hat{w}_p)$ are the eQTL-derived weights and Z is the conditional Z score estimated from the previous subsection.

Challenge:

Different tests will be powerful under different alternatives.

Background	Methods	Results	Discussion
00000000	00000	00000000	000

Step 2: Aggregating conditional Z scores to prioritize causal gene

- Sum test: $T_{Sum} = \sum_{j=1}^{p} U_j$ SSU test: $T_{SSU} = U^T U = \sum_{j=1}^{p} U_j^2$
- More generally, for an integer γ ≥ 1, an SPU(γ) test is defined as: T_{SPU(γ)} = ∑^p_{j=1} U^γ_j
- for an even integer $\gamma \to \infty$, $T_{SPU(\gamma)} \propto \left(\sum_{j=1}^{p} |U_j|^{\gamma}\right)^{1/\gamma} \to \max_j |U_j| = T_{SPU(\infty)}$ $T_{aSPU} = \min_{\gamma \in \Gamma} P_{SPU(\gamma)}$, where $P_{SPU(\gamma)}$ is the p-value of the SPU(γ) test

Outline

Background

Methods

Discussion

Background	Methods	Results	Discussion
00000000	000000	00000000	000

Simulation: FOGS prioritizes and improves resolution for finemapping causal genes

- Use chromosome 22 for all simulations; use lung health study for genotype
- We randomly selected two SNPs in one gene to be causal, and the effect size was c = 0.1. The estimated hertibability was about 2.5%.

Background	Methods	Results	Discussion
00000000	000000	00000000	000

Simulation: FOGS prioritizes and improves resolution for finemapping causal genes

00000000 000000 00000 000	Background	Methods	Results	Discussion
00000000 000000 000	00000000	000000	00000000	000

Simulation: FOGS is robust to the choice of penalty parameter $\boldsymbol{\lambda}$

Background	Methods	Results	Discussion
00000000	000000	00000000	000

Simulation: Robustness analysis of FOGS

No SNP-trait association for all SNPs in the locus (under the null):

Background	Methods	Results	Discussio
00000000	000000	000000000	000

Simulation: Robustness analysis of FOGS

The two causal SNPs were missing:

Background	Methods	Results	Discussion
00000000	000000	000000000	000

Simulation: Robustness analysis of FOGS

The causal gene (with all its SNPs) was missing:

Background	Methods	Results	Discussion
00000000	000000	000000000	000

Application to a schizophrenia GWAS summary dataset

Figure 1: Diagram of the putative causal genes prioritized by different methods for the risk regions that contained at least two genes

Background Methods	Results	DISCUSSIO
0000000 000000	00000000	000

Application to a schizophrenia GWAS summary dataset

- Both FOGS and FOCUS identified positive control: C4A
- FOGS identified some putatitve causal genes (such as *RGS6* and *B3GAT1*) that have some biological support but ignored by FOCUS.

Outline

Background

Methods

Results

Discussion

Background	Methods	Results	Discussion
00000000	000000	00000000	⊙●O
Discussion			

- We introduce FOGS, a new method to prioritize putative causal genes for TWAS
- FOGS adequately controls Type I error rates and achieves high power under various alternatives
- Software:

https://github.com/ChongWu-Biostat/FOGS

Manuscript: Wu, C, Pan, W. (2020) A powerful fine-mapping method for transcriptome-wide association studies. Human Genetics, 139(2), 199–213.

Background	Methods	Results	Discussion
00000000	000000	00000000	000
Acknowledgment			

■ MSI@UMN

Supported by NIH

■ We appreciate the availability of the dbGaP data

Thank you!